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1 Introduction

The Space and Naval Warfare Systems Center, San Diego (SPAWARSYSCEN-
SD) and the Defense Information Systems Agency (DISA) Joint Interoperability
and Engineering Organization (JIEQ) have been investigating methods to in-
crease data throughput rates to 12 kilobits per second (kbps) and 64 kbps over
the 5- and 25-kHz UHF SATCOM channels, respectively. There are, however,
many challenges to bandwidth efficient communication over the UHF SATCOM
channel. For example, the hard-limiting transponder on DoD UHF satellites and
the non-linear amplifiers often used in earth station and satellite high power
amplifiers have the effect of removing all amplitude modulation from the trans-
mitted signal and producing spectral re-growth.

In view of these challenges two well-known bandwidth efficient techniques,
trellis-coded modulation (TCM) and continuous-phase modulation (CPM), were
originally considered as methods to increase the UHF SATCOM data rates.
After a period of testing both methods, CPM was proposed as the new 5- and
25-kHz UHF SATCOM standard waveform in MIL-STD-188-181B [1].

The purpose of this paper is to provide a detailed description of uncoded and
coded CPM, including proofs of some of its properties, some examples, discus-
sion of performance trade-offs, derivation of the baseband correlation receiver,
review of synchronization methods, and performance simulations of some of the
CPM waveforms specified in MIL-STD-188-181B [1]. The remainder of this
document provides a description of the CPM waveform (section 2), the coded
CPM waveform (section 3), synchronization methods (section 4), and simula-
tion results (section 5). To obtain a copy of the simulation software written in
MATLAB code please contact the third author (email: cmai@spawar.navy.mil).



2 CPM Waveform

CPM is a constant amplitude, phase-modulated technique in which the phase is
constrained to be continuous everywhere, in particular at symbol transitions; see
Anderson, Aulin and Sundberg [2] for a detailed description of this modulation
technique. This scheme of smoothing out the phase discontinuities at symbol
transitions reduces spectral spreading relative to other constant amplitude tech-
niques which have phase discontinuities at symbol transitions. For example, at
symbol transitions quaternary phase-shift keying (QPSK) can change phase by
+90° or 180° and offset QPSK (OQPSK) can change phase by +90°. CPM
modulation includes both continuous-phase frequency-shift keying (CPFSK)
and minimum-shift keying (MSK) as special cases.

2.1 Waveform Definition
The CPM waveform is defined by

2F

s(t,a) = Ts cos(2m fot + (¢, @), (1)
S

where F, is the energy per symbol, T, is the symbol duration and fy is the

carrier frequency. After application of a familiar trigonometric identity, the

CPM waveform may be represented equivalently as

2.
s(t,a) =

[I(t, &) cos 27 fot — Q(t, ) sin 27 fot] , (2)

S

where the in-phase component, I(t, e), is defined as

I(t, ) £ cos p(t, @) (3)
and the quadrature component, Q(t, ), is defined as

Qlt, @) 2 sin o(t, ). o

In this technique, the transmitted information is carried in the phase, ¢(t, o),
defined by the expression

+00
o(t,a) =27 Z hioq(t — iTs), (5)
1=—00
in which the data sequence, o = (... ,a_1,®p,41,...), is convolved with a

phase response function, q(t). Each data symbol, «;, is generated by first group-
ing an incoming stream of bits, b;, into successive blocks of information bits, b;,
of length m, and then mapping each block of information bits into an M-ary
symbol alphabet M = {+1,4+3,... ,£(M — 1)}, where M = 2™. It follows,
then, that Ty = mT}, where Ty, is the bit duration, and also that the symbol rate,



R, £ 1/T,, is given by Ry = R,/m, where R, is the bit rate. See below for a
block diagram of a baseband CPM transmitter (Fig. 1).
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Figure 1: Block diagram of baseband CPM transmitter.

The sequence of real-valued constants, H = {h; : i = i mod H}, called mod-
ulation indices, determines how much the phase changes with each data symbol.
The meaning of the notation, h;, in equation (5) is that only H different con-
stants are used in a cyclical fashion, i.e., ... ,hg,h1,... ,hg_1,ho, h1,... s hg_1,
.... When H =1, there is only one modulation index, denoted hg = h, and the
waveform is called constant-h CPM or simply CPM; when H > 1, the waveform
is called multi-h CPM (MHCPM).

The phase response, ¢(t), describes how the underlying phase change, 2mwa;h;,
evolves with time and is defined as the integral of the instantaneous frequency
pulse, g(t), by the equation

alt) 2 / o(r) dr. (6)

From this integral equation and equation (5) it is clear that the shape of g(t)
determines the smoothness of the information carrying phase, ¢(t, ). In par-
ticular, the greater the smoothness of ¢g(t) the more gradual are the phase tran-
sitions, producing a faster rate of reduction of the spectral side lobes of the
waveform.

It is assumed that the pulse, g(t), is bounded, i.e., |g(t)| < B < +oo for all
t, and of finite duration, LT, i.e., g(t) = 0 for t < 0, and ¢t > LT,. Systems
for which L =1 allow pulse shaping only over a single symbol interval and are
called full-response [3]; systems for which L > 1 allow pulse shaping over several
symbol intervals and are called partial-response [4]. See below (Fig. 2) for some
examples of full-response and partial-response pulses of different shapes and
their phase responses. The pulse specified by MIL-STD-188-181B is the full-
response rectangular shape referred to as the 1IREC pulse (Fig. 2, 1REC);
constant-h CPM with a 1IREC pulse is equivalent to CPFSK.

By virtue of the smoothing provided by the operation of integration and
after normalizing g(t) if necessary, it can be proved that the phase response
satisfies the following properties:

1. ¢(t) is a continuous function, for —oco <t < 400, and

0,if t <0
2-a(®) :{ Lift > LT,



_ap 12
5 & PSK
0 o— ]
T 0 T 2T 3T T 0 T 2T 3T
1T _ 12
G =
5 = _~ 1REC
o 0 ]
T 0 T 2T 3T T 0 T 2T 3T
1T 12 o
© =
< A & - 2TRI
of—— —] 0 ]
T 0 T 2T 3T T 0 T 2T 3T
— 12T /\ 1/2 I
= =
= 52 2RC
o O _ EE— 0 4
T 0 T 2T 3T T 0 T 2T 3T
T t

Figure 2: Instantaneous frequency pulses, g(7), and their corresponding phase
respouses, ¢(t), for phase shift keying (PSK), full-response rectangular (1REC),
partial-response (L = 2) triangular (2TRI), and partial-response (L = 2) raised
cosine (2RC).

Partitioning the sum in equation (5) into three sums over the intervals —oo <

i<n—L,n—(L-1) <i<mnandn+1 <i < 400, and then applying property 2
above to q(t — iT}) in each sum, it follows that during the n'® symbol interval,
defined by nT, <t < (n + 1)T, the phase can be expressed as

P(t, ) = 6(t, ) + On,

where

(7)

"

O(t, ) 221 > hyauq(t —iTy) (8)
i=n—(L—1)
and

n—L

™ Z hiai

i=—00

S
3
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To prove continuity of the phase at symbol transitions as claimed above for
CPM waveforms, we let t,,, be a sequence of points belonging to the n" symbol
interval for which limy_,o ¢, = (n + 1)T,. Applying properties 1 and 2 above,
it can be shown that

klgglo P(tn, ) = O(n+1)Ts, ) + [0y, + Thys1 ropi1—1]
= ¢((n+1)T;, o), (10)

by equations (9) and (7). This proves continuity of the phase at symbol tran-
sitions, and it shows that 7h,,_r,a,_1, in equation (9) functions as a continuity
correction term at symbol transitions.

2.2 Performance Trade-Offs

Choice of g and of the values of the system parameters M, H,{h;}, and L for a
particular application of CPM or MHCPM is, as in the case of other waveforms,
determined by a consideration of trade-offs among various indicators of system
performance. Performance indicators included are signal energy or power, com-
plexity, bit error rate (BER), and spectral efficiency, measured by the width of
the main and side spectral lobes, the rate of reduction of the spectral side lobes,
or the fractional out-of-band power. For example, increasing M, H, or L can im-
prove performance with respect to BER and required signal energy (Anderson et
al. [2]), but such increases also degrade performance in terms of increased com-
plexity, especially receiver complexity (Sasase and Mori [5]). Other trade-offs
are described below, first for the case H = 1 and then for H > 1.

H = 1: In this case Anderson et al. [2] state that if g(7) has ¢ continuous
derivatives, or equivalently that ¢(t) has ¢+ 1 continuous derivatives, then for
any values of M, h, or L the power spectral density (PSD), S(f), decreases
asymptotically as

S(f) ~ £ (f — o).

From this asymptotic relationship, it follows that the PSD of all PSK modulation
schemes decays like | f |_2, the PSD of all CPM schemes with rectangular pulse
decays like | f |_4, the PSD of all CPM schemes with triangular pulse like | f |_6,
and the PSD of all CPM schemes with raised cosine pulse like | f |_8. However,
since the asymptotic decay rate of the PSD may occur very far from the center
frequency, increasing c is not the most effective means of achieving spectrally
efficient modulation; in fact, Anderson et al. [2] point out that for fixed L large
values of ¢ produce large main and first side spectral lobes. Sasase and Mori [5]
also state that the width of the main spectral lobe decreases with increasing L
but increases with increasing i or M. Finally, Anderson and Sundberg [6] note
that larger values of h generally lead to better BER performance but a wider
spectrum.

H > 1: Increasing H potentially decreases BER for fixed values of Ep/Ng
or decreases required Ej /Ny for fixed values of BER, but this trade-off between



BER or required Ep/Ny and increased complexity is unfavorable beyond H =
4. Sasase and Mori [5] and others report that 4-ary 2-h MHCPM achieves
signal energy improvement of about 2 dB over both 4-ary single-h and binary
MHCPM at the same bandwidth. Letting h = (1/H) Zf:?)l h; denote the mean
modulation index, Anderson et al. [2, Table 3.1] prese_nt results that suggest
that most good schemes with H = 2, 3, or 4 should have values of A between 0.5
and 0.7 with the values of h; close together. They also report that the spectral
characteristics of a MHCPM scheme with mean modulation index % and where
the values of h; are close together is similar to a CPM scheme with h = h.

2.3 State Model

Defining the state vector, o,, € 3, by
On = (enyan—laan—%-- . 7an7(L71))7 (11)

it is clear from equations (7) and (8) that the phase and, hence the signal, is
completely determined over the interval [nTs, (n + 1)7Ts) and subsequent inter-
vals by o, and new data symbols «a;,ant1,.... We note that the memory
introduced into the phase process by the continuity constraint and pulse length,
L, is reflected in the dependence of the state vector on the phase state, 6,,, and
the L —1 previous data symbols, ay, 1, 2,... , &, _(r—1). CPM systems that
are practical in a decoding sense must be representable by a finite number of
states with an associated state trellis.

The finite-state requirement for practical decoding can be fulfilled only if 4,,
takes on a finite number of values. This constraint on 6,, is satisfied under the
conditions that: (1) for each ¢ = 0,1,... ,H — 1 the modulation index, h;, is
a rational number expressible as h; = 2r;/p, where r; and p are integers, and
(2) the ged(rg,m1,...,75-1,p) = 1, where gcd denotes the greatest common
divisor. Substituting expressions for h; in the form given by condition (1) into
the first line of equation (9) it follows that

n—L

0, = (27 /p) Z Q.

I=—00

Then, applying the Euclidean algorithm to the summation, it can be seen that
the phase states are given by

2
0, €0 = {Sj:Sj:j—W,forj:QL... ,p—l} (mod 27). (12)
p

Letting the operator |-| denote the cardinality of a set, it is clear that |©| = p and,
therefore, that as required for practical decoding, |X| is finite and furthermore
from equation (11) that

|22 = pME—D), (13)



Condition (2) insures that |©| is minimal in size since if ged(rp, r1, ... ,7y_1,p) =

d > 1 and p = pd, then by a similar derivation it can be shown that
= .27 . ~
0, €0 = {Sj 1S =j—,for j=0,1,... 7p—l} (mod 27),
p

in which case 0] = p < p and 3| = pM (L1,

If any of the modulation indices is given by h; = r;/p with r; an odd number,
first express h; equivalently as h; = 2r;/p’ where p’ = 2p, and then use p’ in
place of p in equations (12) and (13) to compute the values of the phase states,
S;, and the number of states, ||, respectively. For notational purposes, we note
that © can be partitioned as © = Ogyen U Oyq4, where

Ouven = {S; € ©:jis even}
is the subset of states with even-numbered indices and

Ooad = {S; € ©: j is odd}
is the subset of states with odd-numbered indices.

Remark 1 If H = 1 and p is even it can be shown from equation (9) that if
Or, € Ocpen then 0,41 € Opgq and if 0,, € Opqq then 0,41 € Opyen. Thus, if p is
even, the number of phase states occupied in any symbol interval is reduced by
half.

2.4 Full-Response CPM

In the full-response case (L = 1) the dependence on « in equation (8) and, hence,
in equation (7) involves only the single data symbol «,, so in this case we adopt
the notation (¢, a,) for 0(t, ) and ¢(t, av,) for (¢, ). Using this notation in
equations (7), (8), and (9), it follows that on the interval nTy <t < (n + 1)T,
the phase may be written as

(t, an) = 0(t, o) + O, (14)
and furthermore that 0(t, ar,) simplifies to
0(t, oun) = 2mhpang(t — nTy), (15)
and that
On = 0On_1+Thy_10,_1. (16)

In this case the state vector, o, reduces to a scalar given by the phase state,
0,; the current data symbol, ., determines the transition from the current
phase state, 6,,, to the next phase state, 0,,+1; and this transition defines the
actual function of time that is transmitted during the n!* symbol interval. For
the remainder of this document, we consider only the full-response case with
finite-length data sequence @ = (ag, a1, ... ,ay).



0n+1
O, | ap=-11 a0, = +1
S3 So So
Sa Sy S3
Sy So Sa
So S3 Sy

Table 1: Phase state transitions for MSK.

Example 1 Consider minimum-shift keying (MSK), which is a special case
of binary CPM with a full-response, rectangular pulse (1REC) and a single
modulation index, h = % = 271. In this example, M = {—1,4+1} and o, =
0, € © = {0,%77r737”}, where phase state transitions from 0, to 0,.1 are
determined according to equation (16). See below (Fig. 3) for a diagram of the
phase state trellis for MSK. The effect of an even value of p is seen in that
even-numbered (odd-numbered) phase states transition to odd-numbered (even-
numbered) phase states as noted above (Remark 1). For encoding (section 2.6.1)
and decoding (section 2.6.3), the transition information can be stored in tabular
form as above (Table 1). In actual implementation the decoding process can
be simplified further using the knowledge that only half of the phase states are
occupied at any time.

Figure 3: Phase state trellis section for MSK between symbol intervals n and
n + 2, where transitions generated by o, = —1 and a,4; = —1 are depicted
with dashed lines and transitions generated by «, = +1 and «a,,1; = +1 are
depicted with solid lines.

For non-binary MHCPM, Table 1 can be expanded easily to allow for depen-
dence on more than two data symbol values and on more than one modulation
index. As in the constant-h case (Example 1) there are special cases of MHCPM
in which only some of the phase states are occupied at any time, allowing for a



similar simplification of the MHCPM decoding process. See below (Example 2)
for a description of such a case.

Example 2 Consider the 4-ary, 2-h, full-response waveform described in MIL-
STD-188-181B [1] where one of the numerators of hg and hy is an even number
and the other is an odd number. From equation (16) it follows that if the value of
hyn has an even numerator then an even-numbered (odd-numbered) phase state,
0., will transition to an even-numbered (odd-numbered) phase state, 0,11, and
if the value of h,, has an odd numerator then an even-numbered (odd-numbered)
phase state, 0,,, will transition to an odd-numbered (even-numbered) phase state,
On+1. Letting hy denote the case when the value of hy has an even numerator
and g, denote the case when the value of hy has an odd numerator, these tran-
sitions over four symbol intervals can be summarized by the following cyclically
repeating diagram

hi h?hu hz.+2 h;71+3
eeven ? eeven ? ®0dd ? eodd ? ®even,-

2.5 Baseband Correlation Receiver

Following the derivation in Anderson et al. [2], it is assumed that the received
signal, r(t), is expressible as

r(t) = s(t, a) + N(2), (17)
where N (t) is bandpass white Gaussian noise (BPWGN) given by
N(t) = In(t) cos 2w fot — Qn (t) sin 27 fot. (18)

The mazimum likelihood sequence estimate (MLSE) maximizes the log likelihood
function
+o0 9
log(P(rit)ie) ~ — [ [r(0) — st (19)
with respect to the sequence . It is equivalent to maximize the correlation
+oo
J(a) = / r(t)s(t, o) dt (20)

with respect to the sequence « as the basis for a correlation receiver. Calculation
of this correlation is not feasible in practice, so consider instead

(n+1)T
Jo(@) = / r(8)s(t, @) dt, (21)

—00

which is calculated recursively as

Jn(a) = T 1 () + Zp (e, 6,,), (22)



where
(n+1)T

Zp(a,6,) = 2/ r(t)s(t, ) d. (23)
nTy
The metrics Z, (e, 0,,) are seen to be the correlation between the received signal
and all possible transmitted signal alternatives over the n'" symbol interval. To
choose the sequence @ that maximizes the log likelihood function (19) up to the
% symbol interval we use the well-known Viterbi algorithm (section 2.6.3).
Since we assume full-response CPM we will denote dependence on « in any
following equations as a dependence only on «, as in the previous section.
Substituting for r(t) using equation (17) and then substituting for s(¢, ) and
N(t) using equations (2) and (18), respectively, multiplying terms, applying
trigonometric identities, and omitting double frequency terms, it can be shown
that

(A DTs
w0y 00) = V2B IT, / [Tt ) (1) + Q)@ )| .
(24)
where
I(t, an) = 2B, JT,I(t, o0) + In(t) (25)
and

Q(t, an) = /2E | TsQ(t, o) + Qn (t). (26)

For simplicity, therefore, we consider only the baseband correlation receiver de-
fined by equation (24) and shown in block diagram form below (Fig. 4).

Iy(0) HU(ta,)}

I(t.ax,) l T(ta,)

Sample at time
~ dr ||
'\‘I_‘j ) -[( at t=T,2T,,...
{Zn(an’ n)}
&
ot.a,) o(t.a,) J.( it | Sample at time

(D )
'T T/ (=T, 2T,....

Oy(0) {0(t.a,)}

Figure 4: Block diagram of baseband CPM receiver.
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From equations (25) and (26) and as shown in the above receiver structure,
the received in-phase signal, I (t, ), is the sum of the transmitted in-phase
signal, I(t, o), and the in-phase component, Iy (t), of the BPWGN; while the
received quadrature signal, @(t ay,), is the sum of the transmitted quadrature
signal, Q(t,a,,), and the quadrature component, Q y(t), of the BPWGN. For
clarification of equation (24) and of the receiver diagram (Fig. 4), we empha-
size that the baseband receiver correlates the received in-phase signal over one
symbol interval with all possible transmitted in-phase alternatives over that
symbol interval, namely {I(¢, ;) : a, € M}, and similarly correlates the re-
ceived quadrature signal over one symbol interval with all possible transmitted
quadrature alternatives over that symbol interval, namely {Q(¢, a;,) : o, € M}

Substituting for I(¢, ) and Q(t, ay,) from equations (3) and (4), respec-
tively, and for ¢(t, ) = ¢(t, ;) from equation (14), and applying a trigono-
metric identity gives

(n+1)Ts _
Zn(n,0,) = +/2E,/Tgcos(0,,) /T I(t, ay,) cos O(t, o) dt
(n+1)Ts
+v/2E/Ts cos(t‘)n)/ Q(t, o) sin O(t, v, ) dit
nds
(n+1)Ts _
++v/2E, /T, sin(0,,) / Q(t, o) cos O(t, ay,) dit
nls
(n+1)T _
—v/2E,/Tgsin(0,,) / I(t, o) sin O(t, cv,) dt,  (27)
nTy

which makes explicit the dependence of Z,(ay,#,) on both «,, and 6,,. The
quantities {Z,(a,,0,) : o, € M, 0, € O} output by the receiver (Fig. 4) are
the branch metrics of the Viterbi algorithm (section 2.6.3). Clearly then, there
are at most M|©| values of Z,,(an, 0,) over each symbol interval; in fact, there
can be fewer values of Z,,(ay, 0,,), such as for constant-h CPM waveforms (Re-
mark 1) or the MIL-STD-188-181B MHCPM waveforms (Example 2) which only
have M|©|/2 values of Z,(ay,0,) over each symbol interval.

2.6 Simulation

In our simulations we assume a baseband transmitter (Fig. 1) and a baseband
correlation receiver (Fig. 4) so that our results are independent of carrier fre-
quency, fg, and bit rate, R,. For the purposes of simulation, time must be
discretized, or sampled, and the equations evaluated at sampled points. This
is accomplished by setting a sampling frequency, fiam, defined as the num-
ber of samples per symbol interval, Ts, and by defining the sampling inter-
val, Tiam, as Tiam £ T, /fsam- As implemented in the simulations, the equa-
tions from previous sections are evaluated at times t = nT, + kT;,,,, Where
k=0,1,2,... , faam —land n=0,1,... | I.

11



Example 3 Consider the case when g(t) is the IREC pulse, so that, according
to equation (6), q(t) is a ramp function (Fig. 2, IREC) given by

0, ift <0
q(t) =4z, fO<t<T,
s ift > T,

Evaluating equation (15) at sampled points t = nTy + kTsun and substituting
into equation (14) gives

¢(’I’LTS + kT om, an) = 27rhanQ(kTmm) + 4,

kT‘:’(],m
= (2rhoay,)——— + 6,
(2mhay,) 5T, +

k
whanf— +0,, (28)

fork=0,1,2,..., feam — 1 and n =0,1,... . We note that when evaluated
at sampled values, ¢ is independent of Ty, and hence of Ry as claimed, and we
remind the reader that successive values of 6,, may be obtained from a look-up
table as in Example 1 (Table 1).

Simulation of the encoding is accomplished by a program which performs
the functions of the Serial-to-Parallel, Binary-to-M-ary Mapping, and M-ary
CPM Modulator blocks in the baseband CPM transmitter diagram (Fig. 1),
as described below in section 2.6.1. Simulation of the baseband correlation
receiver (Fig. 4) is described in section 2.6.2, and finally simulation of the
decoding is described in section 2.6.3.

2.6.1 Encoding

Serial-to-Parallel This code groups the incoming stream of bits into succes-
sive blocks of information bits.

1. inputs:

e sequence of randomly generated bits, by, for i’ =1,2,... I’
e value of M (MIL-STD is 4)

2. computations:
o m =log, M
3. outputs:

e input bits, b;, grouped into sequence of blocks, b;, each containing
m bits

12



Binary-to-M-ary This code maps each block of m information bits into an
M-ary symbol alphabet.

1. inputs:

e value of M (MIL-STD is 4), which must be representable as a power
of 2

e sequence of blocks, b;, each containing m bits
2. computations:

e generation of M-ary alphabet, M = {£1,43,... ,£(M — 1)}
e binary-to-M-ary map

3. outputs:

e value of «; € M corresponding to each input block, b;, for ¢ =
0,1,2,...,1

M-ary CPM Modulator This code generates samples of the CPM wave-
form. For simplicity, we restrict our description to the MIL-STD MHCPM
waveform, where H = 2 and ¢(t) is the IREC pulse.

1. inputs:

e values of M (MIL-STD is 4), hg, h1, and foum

e values of ;, fori =0,1,2,... ,1
2. computations:

e initialize 6g to Sp =0

e generate phase state look-up table, as in Example 1 (Table 1), for
each value of h;

e compute values of 2~ for k =0,1,2,..., foam — 1

e compute values of ¢(t,a) at sampled points using equation (28),
with hg or h;y substituted for i, and with values of 8,, obtained from
a look-up table

e compute values of I(t, ) and Q(t, @) at sampled points from equa-
tions (3) and (4), respectively

3. outputs:

e values of I(t, ) and Q(t, ) at sampled points

13



2.6.2 Baseband Correlation Receiver

For the purposes of simulation the branch metrics, Z, (o, #,,), output by the
baseband correlator receiver (Fig. 4), are estimated by approximating each of
the integrals in equation (27) by Riemann sums. For example, the Riemann
sum approximation of the integral

(n+1)T
/ F(t) dt

Ts
based on samples of f(t) at points ¢t = nTs + kTium, is given by

Jsam —1

D Taam f(nTy + KT,
k=0

Denoting samples of f(tan) at times t = nT, + kTsam by k) (av,) and
using equation (25) it follows that

I (a,) 2 T(nT, + kTeam, an)

= 2B, T 1) (o) + 109, (29)
where
108 (a) £ T(nTy + kTeam, ) (30)
and
IR 2 Iy (0T + KTam ) (31)

denote samples of I(t, ;) and In(t), respectively. Using the same notation, it
follows from equation (26) that samples of Q(t, «,,) are given by

QUM () 2 QnTy + kTuum, )
= VREJT.Q"N (o) + QY (32)
where
QUM () £ Q(nT,y + kTuam, ) (33)
and
() 2 O (1T + KT (34

denote samples of Q(t, o) and Qu (t), respectively.

From the properties of BPWGN and equation (18), we observe that In(t)
and Qn(t) are independent Gaussian processes with identical rectangular spec-
tral density functions given by

NOJ if |f‘ S 1/27—‘%111
0, otherwise.

Six(f) = San (f) = {

14



Since IJ(\?’]C) and Q%L’k) are samples from Iy () and Q (), respectively, taken at

the Nyquist rate of 1/7%,,,, it follows that IJ(\?’k) and QS\?’k) are each sequences
of independent, identically distributed, discrete Gaussian random variables with
mean 0 and common variance given by No/Tsam = Nofsam /Ts. Therefore, we

define new discrete Gaussian random variables, I](\?’k) =/ TSI](\?’k) and Q%L’k) =

\/iQE\?’k), having mean 0 and common variance given by N fsam, which is
independent of T, and hence of Rj.

From equation (15) we see that sampling the functions cos6(t, ) and
sin O(t, a,) at times t = nTs + kT, gives

cos (nTy + kTsam, ov,) = cos[2mhy, 0, q(KT o )] (35)
and

sin (nTs + kTiam, vn) = sin[27hp g (KT vam )] (36)

Finally, substituting I}?’k) /v/Ts for I](\?’k) in equation (29) and QS\T,'“’k) /v/Ts for
Q%L’k) in equation (32) and using equations (35) and (36), the discrete Rie-
mann sum approximation of the branch metrics, Z, (o, 0,,) defined above in
equation (27), is given by

ZW9) (a,, 0,) = i cos(ln) . (V2EI"™P (o) + I§") cos[2mhy, g (kTiam )]

sam k=0

T Joam —1
+—f2Es cos(fl) Y, (V2EQ™ (an) + Q") sin2mhyng (KT

sam k=0

+ sin(0,) > (V2E.QU (o) + QM) cos[2mhy, g (KT )]
sam k?:O
V2E, Falt

- * sin(6,,) (V2E 109 (a,) + T sin (27 by, 00 g (KT )],
sam k?:O

forn =0,1,... ,I—1. For the case when g¢(t) is the IREC pulse, the arguments
in the cosine and sine terms in the above equation simplify further as in equa-
tion (28) to Thyak/ fsam. In the IREC case, then, it is clear that ZT(,JdiS)(ozn7 0)
is independent of fy and R} as claimed for our simulations.

2.6.3 Decoding

Since we consider only practical CPM systems which are representable as finite-
state systems with an associated trellis (section 2.3), decoding is possible using
the Viterbi algorithm (VA) in much the same way as the VA is used for decod-
ing convolutional codes. The VA is a recursive procedure to obtain an optimal
solution to the estimation of the state sequence of a finite-state Markov process
observed in memoryless noise [7]. The VA is optimum in the sense of providing
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a maximum likelihood estimate of the sequence of states, called a maximum
likelihood sequence estimate (MLSE). Since a specific sequence of state transi-
tions arises from a unique sequence of data symbols, a MLSE of states is also a
MLSE of the data symbols, «;, and hence, of the message bits, b;.

3 Coded CPM Waveform

CPM by itself may be viewed as a coding operation, since the phase process
exhibits memory in the state vector as described above in section 2.3. Coded
CPM is obtained by precoding the digital symbol inputs to the modulator as
detailed below.

3.1 Waveform Definition

The precoding of the digital symbol inputs required in coded CPM is accom-
plished by inserting a forward error correction (FEC) encoder with rate R, =
[/m between the Serial to Parallel and the Binary to M-ary Mapping blocks in
the baseband CPM transmitter block diagram (Fig. 1) as seen below (Fig. 5).
Thus, the symbol rate for coded CPM is given by R = % = ;RI%, compared
to Rp/m for uncoded CPM (section 2.1). ‘

: i I(t,a

b, | Seral | & | FEC ¢ | PV e | may | fea
to Encoder M-ary CPM O(t.00)

Parallel R.=l/m Mapping Modulator =",

Figure 5: Block diagram of coded CPM transmitter.

In this paper the FEC encoder is either a linear block code or a non-recursive
convolutional code; therefore, any references below to convolutional codes should
be understood to mean non-recursive. As in Proakis [8, section 8-2] we assume
that the convolutional code is of constraint length, K, comprising K consecutive
shift registers, each containing [ bits, allowing for the input information bits to
be shifted into and along the sequence of shift registers [ bits at a time.

For each of the two types of encoder considered here, [ information bits,
denoted by b; = (b, bir41,- . ,bjqa—1)), are input, producing m output code
bits, denoted by ¢; = (Cim, Cimt1s -+ - s Cimt(m—1)), Whered = ..., —=1,0,+1,....
Linear block encoders are said to be memoryless since the coded bits, ¢;, depend
only on b; as determined by m linear functions of the [ bits contained in b;; in
practice the linear functions are usually represented by m column vectors in an
I X m generator matrix. By contrast, convolutional encoders are said to have a
memory since the coded bits, ¢;, depend not only on b; but also on the (K —1)I
preceding bits as determined by m linear functions of the K1 bits contained in
bi,b; 1,b; 2,...,b;_(x_1). (For convolutional codes it is assumed that K > 1,
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since the case that K = 1 reduces to a linear block code.) As in Pizzi and
Wilson [9] we describe the encoding operation for either linear block codes or
convolutional codes and the subsequent mapping operation functionally as

;= f(bi, bi_1,...,bi_(k_1)), (37)

where K = 1 for linear block codes or K > 1 for convolutional codes.

3.2 Performance Trade-Offs

Coded CPM offers the benefit of potential coding gain at the cost of bandwidth
expansion attributable to the code redundancy and increased complexity at-
tributable to the longer memory, as will be seen in the next section. Using the
99% power in band definition of bandwidth, Anderson et al. [2, section 11.3.4]
estimates that the bandwidth of a rate-R. coded CPM waveform is greater
than the bandwidth of an uncoded CPM waveform by the factor 1/R.. Also,
while the number of states in uncoded CPM is given by pM(“=1 | as seen from
equation (13), the number of states in coded CPM increases exponentially to
pME-DHE-D a5 will be seen from equation (39) in the next section.

Anderson et al. [2, section 11.3.5] remark that good coded CPFSK schemes
have been found by employing a high rate convolutional code, a large symbol
alphabet, M, and a low modulation index. They remark further that by varying
the system parameters, particularly the modulation index, different combina-
tions of bandwidth and power savings can be achieved.

3.3 State Model

Given the definition of the state vector, o,,, in section 2.3 and the functional
dependence of equation (37), it follows that for linear block or convolutionally
encoded CPM the state vector could be defined in terms of the input data as

Op = (Qn, bn—17 bn—27 sy bn—(L—l)—(K—l))7 (38)

which demonstrates the combined effects of pulse length, L, and coding on
memory. Note that when [ = 1 the state vector for encoded CPM simplifies to

Op = ((9,,” bnfly bn727 cee 7bn7(L71)7(K71))> (39)

which has the same form as equation (38) but reveals a dependence on the
individual information bits.

4 Synchronization Methods

For coherent detection, knowledge of the carrier frequency and phase and of the
data symbol transition instants must be available to the receiver. The process
of determining these parameters is known as synchronization. We employed
the synchronization method developed by Miller, Harris, and Stephens [10] for
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the MHCPM waveform which was adopted by MIL-STD-188-181B [1]. In this
method, synchronization is achieved at the receiver by processing a preamble,
transmitted as an MSK (binary) signal at the 4-ary data symbol rate and imme-
diately preceding the data transmission (Fig. 6). The preamble contains three
fields: a Preamble Bit Pattern (PBP) followed by a Start of Message (SOM)
marker, both of which are used for synchronization, and then a Header contain-
ing modulation, forward error correction and interleaver information pertaining
to the transmitted data.

Transmitter Preamble SOM Header Data
Start-up/ Bit Traffic
Power-up Pattern

50 ms 192 bits 16 bits 42 bits

(maximum)

MSK MSK MSK Specified

Key Down | Modulation | Modulation | Modulation | Modulation

Figure 6: Synchronization method for MHCPM.

The PBP is a 192-bit string, comprising 48 consecutive repetitions of the
4-bit sequence, 1100, and has a power spectrum with tones centered at fy +
N foym /4, where fsym 1s the symbol rate that will be used during the data trans-
mission and n is any integer. Only terms corresponding to n = 0,41, and
42, however, have significant energy. Carrier frequency, carrier phase, timing
information, and symbol rate are estimated from the features of a fast Fourier
transform (FFT) of the PBP. Specifically, carrier frequency is estimated by the
frequency of the n = 0 tone, carrier phase is estimated by the phase of the
n = 0 tone, symbol phase (timing) is estimated from the phase of the tones
at n = +1 and at n = 0, and symbol rate is estimated from the spacing be-
tween the n = 0 and n = +1 tones. Finally, timing of the modulation indices,
called superbaud timing, and timing required for demand assigned multiple ac-
cess (DAMA) schemes, called frame synchronization, are established from the
output of a correlator operating on the 16-bit SOM sequence, 1010 1100 0011
1011.

5 Simulation Results
We conducted two simulation studies, first of performance results for uncoded
and coded MHCPM assuming perfect synchronization (section 5.1) and then

performance results in acquiring synchronization (section 5.2) using the methods
of section 4.
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5.1 Assuming Synchronization

We performed simulations of 4-ary (M = 4) MHCPM with a full-response (L =
1) rectangular frequency pulse (IREC) using the five sets of values for H =
{ho,h1} specified in MIL-STD-188-181B [1] and assuming an additive white
Gaussian noise channel. We have included plots of our simulation results only
for the lowest and highest sets of values of H, {4/16,5/16}-CPM (Fig. 7, top)
and {12/16,13/16}-CPM (Fig. 7, bottom), respectively, since results for the
other three sets of values of H vary between these extremes.

In addition to performance curves for simulation results each plot includes,
for comparison, theoretical performance curves for {4/16,5/16}-CPM or {12/16,
13/16}-CPM and for MSK, which is in fact binary (M = 2) CPM with a full-
response (L = 1) rectangular frequency pulse (1IREC) and single modulation
index h = 1/2. The theoretical performance curve for MSK is valid at all values
of Ey/Np and is identical to the curve for BPSK. The theoretical performance
curves for the {4/16,5/16}- and {12/16,13/16}-CPM waveforms were generated
from an approximation based on the minimum distance properties of each CPM
waveform given in Anderson et al. [2, equation 3.31]. The theoretical CPM
waveform curves are valid at high values of E,/Ny and provide an estimate of
the maximum gain attainable by CPM relative to MSK which, as seen in the
plots, is approximately 2.4 dB for the {4/16,5/16}-CPM waveform and 4.6 dB
for the {12/16,13/16}-CPM waveform. The gain of MHCPM relative to MSK
is attributable to the increase in H from 1 for MSK to 2 for MHCPM and to
the increase in M from 2 for MSK to 4 for MHCPM.

The codes used in the convolutionally encoded CPM simulations were R, =
1/2 and K = 7 convolutional codes; whereas the codes used in the Reed-
Solomon (RS) encoded CPM simulations were (60, 50) RS codes, shortened from
a (63,53) RS code employing 6-bit code symbols. For our simulations we tried
interleavers of depth 4, 8, and 16 symbols with RS codes; however, we included
results only from the interleaver of depth 4 symbols since the additional gain
with a depth of 8 and 16 symbols was marginal.

Note that above some value of Ej, /Ny in each plot the performance curve for
simulated CPM lies between the theoretical performance curves for CPM and
MSK as expected. Also note that in the progression from {4/16,5/16}-CPM to
convolutionally encoded {4/16,5/16}-CPM, to RS encoded {4/16,5/16}-CPM,
and finally to interleaved RS encoded {4/16, 5/16}-CPM simulated gains relative
to MSK at bit error rate 10~° increase monotonically from approximately 1.5
dB to 5 dB (Fig. 7, top). A similar progression of even larger gains is evident in
the case of {12/16,13/16}-CPM (Fig. 7, bottom) at the cost of greater spectral
occupancy than for {4/16,5/16}-CPM.

5.2 Acquiring Synchronization

In this simulation we generated a received intermediate frequency 4-ary (M = 4)
MHCPM waveform corrupted by additive Gaussian noise, and then extracted es-
timates of the four parameters from features of the FFT of the PBP as described
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Performance comparison of MSK and uncoded/coded (4/16, 5/16)-CPM
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Figure 7: Performance results for theoretical MSK (MSK) and theoretical CPM
(CPM) compared to simulated results for CPM (CPM (sim)), convolution-
ally encoded CPM (CC/CPM (sim)), Reed-Solomon encoded CPM (RS/CPM
(sim)), and interleaved Reed-Solomon encoded CPM (RSI/CPM (sim)).
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above (section 4). Using these estimated parameters, MSK demodulation and
then low-pass filtering was applied to the waveform, followed by MSK decoding
using a 1-h CPM decoder. Finally, the known 16-bit SOM sequence was cor-
related with successive 16-bit strings of the decoded preamble, i.e., with bits
1,2,...,16 (k = 1), bits 2,3,...,17 (k = 2), ..., and bits 193,194,... ,208
(k = 193). For our purposes, synchronization was defined as SOM synchro-
nization, which was achieved when a peak correlation value was obtained for
k = 193. As seen below (Fig. 8) our estimates of the probability of SOM
synchronization obtained from simulation ranged from 0.8966 at —2.0 dB to
0.9996 at 2.0 dB. We observed that unsuccessful, or false acquisition, generally
occurred when there were decoding errors in the received SOM sequence.

100

98

96

94

92

Probability of SOM Synchronization (%)

920

88 1 1 1 1 1 1 1
-2 -1.5 -1 -0.5 0 0.5 1 15 2

Eb/No (dB)

Figure 8: Probability of SOM synchronization for MIL-STD-188-181B.
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